Novel stability criteria for discrete‐time delayed neural networks via extended negative‐definiteness approaches of matrix‐valued quadratic function
نویسندگان
چکیده
This article investigates the stability analysis of discrete-time neural networks with time-varying delays by utilization quadratic delay information. First, three extended negative-definiteness lemmas for matrix-valued function different matrices injection are established. Second, a novel delay-product-type Lyapunov functional asymmetric summation is developed to relax positive-definiteness functional. Then, proposed negative definite approaches utilized in combination some typical inequalities realize construction linear matrix inequalities. Based on these improved technologies, two delay-dependent criteria less conservatism and fewer computational burdens derived. Finally, several numerical examples presented show validity superiority methods.
منابع مشابه
Novel Stability Criteria for Delayed Cellular Neural Networks
In this paper, a new sufficient condition is given for the global asymptotic stability and global exponential output stability of a unique equilibrium points of delayed cellular neural networks (DCNNs) by using Lyapunov method. This condition imposes constraints on the feedback matrices and delayed feedback matrices of DCNNs and is independent of the delay. The obtained results extend and impro...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Novel delay-dependent criteria for global robust exponential stability of delayed cellular neural networks with norm-bounded uncertainties
The problem ensuring the global robust exponential stability of a class of delayed cellular neural networks with norm-bounded uncertainties is studied. Without assuming the boundedness of the activation functions, by applying the idea of vector Lyapunov function and linear matrix inequality (LMI) techniques, some sufficient conditions for the global robust exponential stability of uncertain cel...
متن کاملTitle Improved global robust asymptotic stability criteria for delayed cellular neural networks
This paper considers the problem of global robust stability analysis of delayed cellular neural networks (DCNNs) with norm-bounded parameter uncertainties. In terms of a linear matrix inequality, a new sufficient condition ensuring a nominal DCNN to have a unique equilibrium point which is globally asymptotically stable is proposed. This condition is shown to be a generalization and improvement...
متن کاملNew approaches on stability criteria for neural networks with interval time-varying delays
Keywords: Neural networks Time-varying delays Stability Lyapunov method a b s t r a c t This paper concerns the problem of delay-dependent stability criteria for neural networks with interval time-varying delays. First, by constructing a newly augmented Lyapunov– Krasovskii functional and combining with a reciprocally convex combination technique, less conservative stability criterion is establ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Iet Control Theory and Applications
سال: 2022
ISSN: ['1751-8644', '1751-8652']
DOI: https://doi.org/10.1049/cth2.12409